Project C2;     (2003 - 2014)

 Project List   Abstracts   All Publications 

A1  A2  A4  A5  A7  B1  B2  B3  B4  B5  B6  B7  B8  B9  B10  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  Ö

 

Interpretation of Gravitational Wave Signals

    Principal Investigators: Bernard Schutz, Bruce Allen, Gerhard Schaefer

The goal of this project is the development of methods for the extraction of information from gravitational wave signals. In the next phase of this project, methods for eliminating spurious coincidences with great confidence will be extended to the implementation of optimal methods for signal detection and parameter extraction from networks of both interferometric and bar detectors. The search methods for gravitational wave pulsars will be optimized in the context of the Einstein search engine.

The goal of this project is the development of methods for the extraction of information from gravitational wave signals. Now that both the LIGO and GEO detectors have begun long observing runs, and the VIRGO detector is expected to join them soon, it is of key importance to develop the most sensitive possible signal-recognition methods for networks of detectors. In the first phase of this project, methods for eliminating spurious coincidences with great confidence have been developed, and these are now in use in the analysis of data. In the next phase of this project, these methods will be extended to the implementation of optimal methods for signal detection and parameter extraction from networks of both interferometric and bar detectors. In addition, new methods will be developed for the optimization of the most difficult search of all: the all-sky blind search for signals from gravitational wave pulsars. Finally, we will investigate methods that combine stochastic and analytic methods into effective detectors for poorly modelled sources.

The optimum detection and parameter extraction methods for networks will be aimed at determining positions, periods, and spindown rates of gravitational wave pulsars; positions, masses, and spins of merging binaries of neutron stars and black holes; and final masses and spins of black holes formed by mergers. More generally, these methods will also be applied to the problem of the approximate reconstruction of signals from unexpected sources, whose waveforms are not known in advance.

The search methods for gravitational wave pulsars will be optimized in the context of the Einstein search engine. This remarkable distributed computing project --- a screen-saver that uses individual PCs to do parts of a much larger search --- is the largest computing facility available for gravitational wave data analysis. By optimizing the search algorithms for the particular characteristics of such a massively parallel computer, it will be possible to markedly increase the sensitivity of the network of computers to these sources.

Researchers

  Bruce Allen   Professor, PI 2007
  Ralph Neuhaeuser   Professor, PI 2010
  Iraj Gholami   Postdoc, 2007
  Maria Alessandra Papa   Professor,
  Dirk Puetzfeld   Postdoc, 2008

Former Associates
  Guillaume Faye   Advisor, 2004-2010
  Henning Kempka   Student, 2004
  S Mukherjee   Postdoc, 2003-2003
  Maria Alessandra Papa   Professor, PI 2003-2004
  Markus Hohle   PhD Student, 2007-2011
  Markus Hohle   Postdoc, 2011-2013
  Anna Pannicke   PhD Student, 2013-2014
  Thomas Runst   P.D., 2003-2003
  Gerhard Schaefer   Professor, PI 2003-2010
  Hans-Juergen Schmeisser   Professor, PI 2003-2006
  Bernard Schutz   Professor, PI 2003-2010
  Winfried Sickel   P.D., 2003-2003
  Nina Tetzlaff   PhD Student, 2009-2012
  Nina Tetzlaff   Postdoc, 2012-2013

Publications

[1] Supernova SN 1006 in two historic Yemeni reports
Rada W. & Neuhaeuser R., Astronomische Nachrichten, submitted (2014)

[2] Determination of a temporally and spatially resolved supernova rate from OB-stars within 5 kpc
Schmidt J., Hohle M.M., Neuhaeuser R., Astronomische Nachrichten 335, 935-948, 2014

[3] The Vela Pulsar with an Active Fallback Disk
Oezsuekan G., Eksi K.Y., Hambaryan V.V.. Neuhaeuser R., Hohle M.M., Ginski C., Werner K., Astrophysical Journal 796, 46-61 (2014)

[4] New Radial Velocities for 30 Candidate Runaway Stars and a Possible Binary Supernova Origin for HIP 9470 and PSR J0152-1637
Tetzlaff N., Torres G., Neuhaeuser R., Bieryla A., Astronomische Nachrichten 335, 981-991 (2014)

[5] The origin of the young pulsar PSR~J0826+2637 and its possible former companion HIP 13962
Tetzlaff N., Dincel B., Neuhaeuser R., Kovtyukh V.V., Monthly Notices of the Royal Astronomical Society 438, 3587-3593 (2014)

[6] The neutron star born in the Antlia supernova remnant
Tetzlaff N., Torres G., Neuhaeuser R., Hohle M.M., Monthly Notices of the Royal Astronomical Society 435, 879-884 (2013)

[7] Narrow absorption features in the co-added XMM-Newton RGS spectra of isolated Neutron Stars
M. M. Hohle, F. Haberl, J. Vink, C. P. de Vries, R. Neuhaeuser, Monthly Notices of the Royal Astronomical Society 419, 1525-1536 (2012).

[8] The origin of RX J1856.5-3754 and RX J0720.4-3125 - updated using new parallax measurements
Tetzlaff N., Eisenbeiss T., Neuhaeuser R., Hohle M.M., Monthly Notices of the Royal Astronomical Society 417, 617-626 (2011)

[9] A catalogue of young runaway stars within 3 kpc from Hipparcos
Tetzlaff N., Neuhaeuser R., Hohle M.M., Monthly Notices of the Royal Astronomical Society 410, 190-200 (2011)

[10] Multipolar equations of motion for extended bodies in general relativity
J. Steinhoff and D. Puetzfeld, Phys. Rev. D 81, 044019

[11] Masses and luminosities of O- and B-type stars and red super giants
M.M. Hohle, R. Neuhaeuser, B.F. Schutz, Astronomische Nachrichten 331, 349 (2010)

[12] Exploiting global correlations to detect continuous gravitational waves
H. Pletsch and B. Allen, Phys. Rev. Lett. 103, 181802 (2009)

[13] Einstein@Home search for periodic gravitational waves in early S5 LIGO data
B. Abbott et al. (The LIGO Scientific Collaboration), Phys. Rev. D 80, 042003 (2009)

[14] The Einstein@Home search for periodic gravitational waves in LIGO S4 data
B. Abbott et al. (The LIGO Scientific Collaboration), Phys. Rev. D 79, 022001 (2009)

[15] Blandford’s Argument: The Strongest Continuous Gravitational Wave Signal
B. Knispel, and B. Allen, Phys. Rev. D 78 044031 (2008)

[16] Motion of test bodies in theories with non-minimal coupling
D. Puetzfeld and D. Obukhov, Phys. Rev. D 78 121501 (2008)

[17] Probing non-Riemannian spacetime geometry
D. Puetzfeld and D. Obukhov, Phys. Lett. A 372, 6711 (2008)

[18] Detecting gravitational wave emission from the known accreting neutron stars
A.L.Watts, B.Krishnan, L.Bildsten, and B.F.Schutz, Monthly Notices of the Royal Astronomical Society, 389, 839-868 (2008)

[19] Computational aspects of a method of stochastic approximation
K. Runovski, I. Rystsov, H.-J. Schmeisser, to appear in Zeitschrift Anal. und Anwendungen

[20] Coherent Network Detection of Gravitational Waves: The Redundancy Veto
L. Wen, B. F. Schutz, Class. Quant. Grav. 22

[21] The generalized F-statistic: multiple detectors and multiple GW pulsars
C. Cutler, B. F. Schutz, Phys. Rev. D 72 (2005)

Theses

[22] Identifying birth places of young neutron stars to determine their kinematic ages
Tetzlaff N., PhD Thesis (2013)

[23] Search for new neutron stars in the XMM Newton source catalog
Trepl L., PhD Thesis (2012)