Project C3;     (2003 - 2014)

 Project List   Abstracts   All Publications 

A1  A2  A4  A5  A7  B1  B2  B3  B4  B5  B6  B7  B8  B9  B10  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  Ö

 

High resolution interferometer based on reflective optical components

    Principal Investigators: A. Tuennermann, K. Danzmann

Project C3 aims for the reduction of thermal noise in gravitational wave detectors that results from the transmission of laser light through optical components. In C3, new optical components based on all-reective gratings are designed, fabricated and tested in order to replace conventional beam splitters and cavity couplers. The intense research of the previous funding periods yields a variety of theoretical and experimental achievements including a test in a prototype gravitational wave detector. The new funding period is required to solve remaining problems which are the combination of the techniques developed here with coating-free mirror surfaces, the additional phase noise associated with diffractive optics, and the reduction of scattered light.

Todays gravitational wave detectors are based on Michelson interferometers that are upgraded with signal and power recycling mirrors (GEO600) or arm cavities (LIGO) to enhance the sensitivity by increasing the laser power interacting with a gravitational wave. The next generation of gravitational wave detectors will work with a circulating laser power in the megawatts range, where thermal effects in the transmitted optics become a limiting factor for the interferometer sensitivity. Within the first funding period the aim of the project C3 was to evaluate the possibility of replacing the transmissive components (beam splitter, cavity input mirror) by reflective devices or rather by reflection gratings. In contrary to conventional mirrors, gratings allow for the separation of the incomming light into more than two (diffraction) directions, which might be all-reflective. However, the application of gratings introduces complete new challenges, like the optimization of the splitting ratios (or rather the diffraction efficiencies) and the reduction of optical losses caused by the grating corrugation, in addition to those of conventional mirrors. Furthermore, such gratings exhibit optical properties different to those of conventional transmitted components. The investigation of their behaviour within an interferometer allows for the realization of novel interferometer setups. The scope of project C3 is the design of such reflection gratings, the fabrication and the investigation of their optical properties. The components will be optimized with respect to their optical losses and used to setup all-reflective interferometer topologies overcomming the thermal limitations of common types.

Researchers

  Karsten Danzmann   Professor, PI 2003
  Ernst-Bernhard Kley   Staff, 2003-2014
  Stefanie Kroker   PhD Student, 2010-2014
  Roman Schnabel   Professor, 2003-2014
  Amrit Pal Singh   PhD Student,
  Andreas Tuennermann   Professor, 2003-2014

Former Associates
  Norbert Bergner   Student, 2008
  Michael Britzger   PhD Student, 2007-2013
  Alexander Bunkowski   PhD Student, 2003-2006
  Oliver Burmeister   PhD Student, 2004-2009
  Tina Clausnitzer   Postdoc, 2005
  Jens Dreiling   Student, 2008
  Christian Graef   Student, 2007
  Dennis Lehr   PhD Student, 2012
  Amrit Pal Singh   Student, 2013
  Thomas Siefke   PhD Student, 2013
  Michael Steinert   PhD Student, 2013
  Rico Wachs   Student, 2010-2011
  Thomas Weber   Student, 2008

Publications

[1] Investigation on the angular dependent reflectance of coupled high-contrast gratings
S. Kroker, T. Kaesebier, E.-B. Kley and A. Tuennermann, Proceedings of SPIE OPTO 89950B, 89950B (2014).

[2] Silicon mirror suspensions for gravitational wave detectors
A. V. Cumming, L. Cunningham, G. D. Hammond, K. Haughian, J. Hough, S. Kroker, I. W. Martin, R. Nawrodt, S. Rowan, C. Schwarz and A. A. van Veggel, Class. Quantum Gravity 31, 025017 (2014).

[3] Coupled grating reflectors with highly angular tolerant reflectance
S. Kroker, T. Kaesebier, E.-B. Kley, A. Tuennermann, Opt. Letters 38, 3336 (2013).

[4] Calculation of thermal noise in grating reflectors
D. Heinert, S. Kroker, D. Friedrich, S. Hild, E.- B. Kley, S. Leavey, I. W. Martin, R. Nawrodt, A. Tuennermann, S. P. Vyatchanin, K. Yamamoto, Phys. Rev. D 88, 042001 (2013).

[5] Investigation of mechanical losses of thin silicon flexures at low temperatures
R. Nawrodt, C. Schwarz, S. Kroker, I. W. Martin, R. Bassiri, F. Brueckner, L. Cunningham, G. D. Hammond, D. Heinert, J. Hough, T. Kaesebier, E.- B. Kley, R. Neubert, S. Reid, S. Rowan, P. Seidel, A. Tuennermann., Class. Quantum Gravity 30, 115008 (2013).

[6] High efficiency two-dimensional grating reflectors with angularly tunable polarization efficiency
S. Kroker, T. Kaesebier, S. Steiner, E.-B. Kley, A. Tuennermann, Appl. Phys. Lett. 102, 161111 (2013).

[7] High contrast gratings for high-precision metrology
S. Kroker, S. Steiner, T. Kaesebier, E.-B. Kley, A. Tuennermann, Proceedings of SPIE OPTO 8633, 86330M (2013).

[8] Asymmetric direction selective filter elements based on high-contrast gratings
S. Steiner, S. Kroker T. Kaesebier, D. Voigt, D. Fuchs, J. Fuchs, E.-B. Kley, A. Tuennermann, Proceedings of SPIE OPTO 8633, 86330Z (2013).

[9] Angular bandpass filters based on dielectric resonant waveguide gratings
S. Steiner, S. Kroker T. Kaesebier, E.-B. Kley, A. Tuennermann, Opt. Express 20, 22555 (2012).

[10] Scientific objectives of Einstein telescope
B. Sathyaprakash and the Einstein-Telescope- Science-Team, Class. Quantum Grav. 29, 124013 (2012).

[11] Novel direction selective filter elements based on high-contrast gratings
S. Steiner, S. Kroker, T. Kaesebier, E.-B. Kley, A. Tuennermann, Proceedings of SPIE OPTO 8270, 827007 (2012).

[12] Tuning the reflectivity of high contrast gratings based on silicon and silica by means of wet etching with hydrofluoric acid
T. Jacobitz, S. Kroker, T. Kaesebier, T. Weber, S. Steiner, E.-B. Kley, A. Tuennermann, Proceedings of SPIE OPTO 8270, 82700U (2012).

[13] External-cavity diode laser in second-order Littrow configuration
M. Britzger, A. Khalaidovski, B. Hemb, E.-B. Kley, F. Brueckner, R.-H. Rinkleff, K. Danzmann, and R. Schnabel, Opt. Lett. 37 (2012).

[14] Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration,
M. Britzger, M. H. Wimmer, A. Khalaidovski, D. Friedrich, S. Kroker, F. Brueckner, E.-B. Kley, A. Tuennermann, K. Danzmann, and R. Schnabel, Opt. Exp. 20 (2012).

[15] Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity
D. Friedrich, B. W. Barr, F. Brueckner, S. Hild, J. Nelson, J. Mcarthur, M. V. Plissi, M. P. Edgar, S. H. Huttner, B. Sorazu, S. Kroker, M. Britzger, E.-B. Kley, K. Danzmann, A. Tuennermann, K. A. Strain, R. Schnabel, Opt. Express 19, 14955 (2011).

[16] Reflective cavity couplers based on resonant waveguide gratings
S. Kroker, F. Brueckner, E.-B. Kley, A. Tuennermann, Opt. Express 19, 16466 (2011).

[17] Widely tunable monolithic narrowband grating filter for near-infrared radiation
F. Brueckner, S. Kroker, D. Friedrich, E.-B. Kley, A. Tuennermann, Opt. Letters 36, 436 (2011).

[18] Pound-Drever-Hall error signals for the length control of three-port grating coupled cavities
M. Britzger, D. Friedrich, S. Kroker, F. Brueckner, O. Burmeister, E.-B. Kley, A. Tuennermann, K. Danzmann, R. Schnabel, Appl. Opt. 50, 4340 (2011).

[19] Diffractively coupled Fabry-Perot resonator with power-recycling
M. Britzger, D. Friedrich, S. Kroker, F. Brueckner, O. Burmeister, E.-B. Kley, A. Tuennermann, K. Danzmann, R. Schnabel, Opt. Expr. 19, 14964 (2011).

[20] Pound-Drever-Hall error signals for the length control of 3-port-grating-coupled cavities
M. Britzger, D. Friedrich, S. Kroker, F. Brueckner, O. Burmeister, E.-B. Kley, A. Tuennermann, K. Danzmann, R. Schnabel,, Appl. Opt. 50 (2011).

[21] Translational, rotational, and vibrational coupling into phase in diffractively coupled optical cavities
B. W. Barr, M. P. Edgar, J. Nelson, M. V. Plissi, S. H. Huttner, B. Sorazu, K. A. Strain, O. Burmeister, M. Britzger, D. Friedrich, R. Schnabel, K. Danzmann, J. Hallam, A. Freise, T. Clausnitzer, F. Brueckner, E.-B. Kley, A. Tuennermann, Opt. Lett. 36, 2746 (2011).

[22] Enhanced angular tolerance of resonant waveguide grating reflectors
S. Kroker, F. Brueckner, E.-B. Kley, A. Tuennermann, Opt. Lett. 36, 537 (2011).

[23] Realization of a Monolithic High-Reflectivity Cavity Mirror from a Single Silicon Crystal
F. Brueckner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tuennermann, R. Schnabel, Phys. Rev. Lett. 104, 163903 (2010).

[24] All-reflective coupling of two optical cavities with 3-port diffraction gratings
O. Burmeister, M. Britzger, A. Thuering, D. Friedrich, F. Brueckner, K. Danzmann, R. Schnabel, Opt. Expr. 18, 9119 (2010).

[25] Experimental demonstration of a suspended, diffractively-coupled optical cavity
M.P. Edgar, B. W. Barr, J. Nelson, M. V. Plissi, K. A. Strain, O. Burmeister, M. Britzger, K. Danzmann, R. Schnabel, T. Clausnitzer, F. Brueckner, E.-B. Kley, A. Tuennermann, Opt. Lett. 34, 3184 (2009).

[26] Demonstration of a cavity coupler based on a resonant waveguide grating
F. Brueckner, D. Friedrich, T. Clausnitzer, O. Burmeister, M. Britzger, E.-B. Kley, K. Danzmann, A. Tuennermann, R. Schnabel, Opt. Expr. 17, 163 (2009).

[27] Coupling of lateral grating displacement to the output ports of a diffractive Fabry-Perot cavity
J. Hallam, S. Chelkowski, A. Freise, S. Hild, B.W. Barr, K.A. Strain, O. Burmeister, R. Schnabel, J. Opt. A: Pure Appl. Opt. 11, 085502 (2009).

[28] Diffractive beam splitter characterization via a power-recycled interferometer
D. Friedrich, O. Burmeister, A. Bunkowski, T. Clausnitzer, S. Fahr, E.-B. Kley, A. Tuennermann, K. Danzmann, R. Schnabel, Opt. Lett. 33, 101 (2008).

[29] Power-recycled Michelson interferometer with a 50/50 grating beam splitter
D. Friedrich, O. Burmeister, M. Britzger, A. Bunkowski, T. Clausnitzer, S. Fahr, E.-B. Kley, A. Tuennermann, K. Danzmann, R. Schnabel, J. Phys.: Conf. Ser. 122, 012018 (2008).

[30] Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency
T. Clausnitzer, T. Kaempfe, E.-B. Kley, A. Tuennermann, A. V. Tishchenko, O. Parriaux, Opt. Expr. 16, 5577 (2008).

[31] Designing multiplane computer-generated holograms with considereation of the pixel shape and the illumination wave
T. Kaempfe, E.B. Kley, A. Tuennermann, J. Opt. Soc. Am. A 25, 1609 (2008).

[32] Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting
T. Clausnitzer, T. Kaempfe, E.-B. Kley, A. Tuennermann, A. Tishchenko, O. Parriaux, Appl. Opt. 46, 819 (2007).

[33] Reflective diffractive beam splitter for laser interferometers
S. Fahr, T. Clausnitzer, E.-B. Kley, A. Tuennermann, Appl. Opt. 46, 6092-6095 (2007).

[34] Interferometry with gratings
O. Burmeister, D. Friedrich, A. Bunkowski, K. Danzmann, R. Schnabel, T. Clausnitzer, S. Fahr, E.-B. Kley, A. Tuennermann, Conference Proceeding (Rencontres de Moriond Gravitational Waves and Experimental Gravity, La Thuile, Val d'Aosta, Italy, March 11-18, 2007).

[35] Phase and alignment noise in grating interferometers
A. Freise, A. Bunkowski, R. Schnabel, New J. Phys 9, 433 (2007).

[36] Optical characterization of ultrahigh diffraction efficiency gratings
A. Bunkowski, O. Burmeister, T. Clausnitzer, E.- B. Kley, A. Tuennermann, K. Danzmann, R. Schnabel, Appl. Opt. 45, 5795 (2006).

[37] Diffractive Optics for Gravitational Wave Detectors
A. Bunkowski, O. Burmeister, T. Clausnitzer, E.- B. Kley, A. Tuennermann, K. Danzmann, R. Schnabel, J. Phys: Conf. Ser. 32, 333 (2006).

[38] Demonstration of 3-port grating phase relations
A. Bunkowski, O. Burmeister, T. Clausnitzer, E.- B. Kley, A. Tuennermann, K. Danzmann, R. Schnabel, Opt. Lett. 31, 2384 (2006).

[39] Low-loss gratings for next-generation gravitational wave detectors
T. Clausnitzer, E.-B. Kley, A. Tuennermann, A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, A. Duparre, S. Gliech, Advances in Thin-Film Coatings for Optical Applications II, edited by M. L. Fulton and J. D. Kruschwitz (2005), vol. 5870 of Proc. SPIE, pp. 153-160 (2005).

[40] Low-loss Grating for Coupling to a High-Finesse Cavity
R. Schnabel, A. Bunkowski, O. Burmeister, P. Beyersdorf, T. Clausnitzer, E.-B. Kley, A. Tuennermann, K. Danzmann, The 2005 Aspen Winter Conference on Gravitational Waves and their Detection (Aspen CL, 2005).

[41] Diffractive optics for future GW detectors
A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, T. Clausnitzer, E.-B. Kley, A. Tuennermann, 6th Edoardo Amaldi Conference on Gravitational Waves (Japan, 2005).

[42] An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings
T. Clausnitzer, T. Kaempfe, E. -B. Kley, A. Tuennermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, Opt. Expr. 13, 10448 (2005).

[43] Phase effects in the diffraction of light: beyond the grating equation
S. Wise, V. Quetschke, A.J. Deshpande, G. Mueller, D.H. Reitze, D.B. Tanner, B.F. Whiting, Y. Chen, A. Tuennermann, E.-B. Kley, T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).

[44] Input-output relations for a three-port grating coupled Fabry-Perot cavity
A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, Opt. Lett. 30, 1183 (2005).

[45] Three-Port Beam Splitters/Combiners for Interferometer Applications
R. Schnabel, A. Bunkowski, O. Burmeister, K. Danzmann, Opt. Lett. 31, 658 (2005).

[46] Ultra low-loss low-efficiency diffraction gratings
T. Clausnitzer, E.-B. Kley, A. Tuennermann, A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, S. Gliech, A. Duparre, Opt. Expr. 13, 4370 (2005).

[47] Allreflective Optics for Gravitational Wave Detectors
A. Bunkowski, O. Burmeister, P. Beyersdorf, K. Danzmann, R. Schnabel, LSC Meeting (Hanford WA, 2004).

[48] Microstructure Technology for Optical Component Fabrication
E.-B. Kley, L-C. Wittig, A. Tuennermann, Microoptics: From Technology to Applications, edited by J. Jahns K.-H. Brenner (Springer Berlin, 2004), vol. 97 of Springer Ser. Optic. Sciences}.

[49] Low-loss grating for coupling to a high-finesse cavity
A. Bunkowski, O. Burmeister, P. Beyersdorf, K. Danzmann, R. Schnabel, T. Clausnitzer, E.-B. Kley, A. Tuennermann, Opt. Lett. 29, 2342 (2004).

Theses

[50] Siliziumbasierte resonante Wellenleitergitter fuer rauscharme interferometrische Resonatorkomponenten
Stefanie Kroker, PhD Thesis

[51] Diodenlaser mit Dreiport-Gitter-Resonator in zweiter Ordnung Littrow
Bjoern Hemb, Diploma Thesis

[52] Interferometrie mit gittergekoppelten Armresonatoren
Maximilian Wimmer, Diploma Thesis

[53] Optical properties of 3-port-grating coupled cavities
Oliver Burmeister, PhD Thesis

[54] Dreiport-Gitter-Resonator mit Power-Recycling
Michael Britzger, Diploma Thesis

[55] Kontrolle der Beugungseffizienzen dielektrischer Gitter
Tina Clausnitzer, PhD Thesis

[56] Laser interferometry with gratings
Alexander Bunkowski, PhD Thesis

[57] Michelson-Interferometer mit diffraktivem Strahlteiler
Daniel Friedrich, Diploma Thesis

[58] Gitter fuer die interferometrische Gravitationswellendetektion
S. Fahr, Diploma Thesis

[59] Fabry-Perot Resonatoren mit diffraktiven Einkopplern
O. Burmeister, Diploma Thesis