Project C5;     (2007 - 2014)

 Project List   Abstracts   All Publications 

A1  A2  A4  A5  A7  B1  B2  B3  B4  B5  B6  B7  B8  B9  B10  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  Ö

 

High-reflection waveguide coatings of detector test masses

    Principal Investigators: R. Schnabel, A. Tuennermann

Project C5 invents and researches techniques for the reduction of ‘coating thermal noise’ of gravitational wave detector test mass mirrors. Coating thermal noise stems from the currently used thick high-reflectivity dielectric multilayer coatings. Within the previous funding period high-reflectivity surfaces were designed and fabricated that rely on thin waveguide structures. The first fully monolithic, single-crystalline mirror was designed and high reflectivities of up to 99.8% were demonstrated. The intent of the next funding period is to further push monolithic mirrors towards their theoretical limit of 100% reflectivity, to demonstrate monolithic antireflection coatings, to supply an in-situ experimental confirmation of a decreased thermal noise level of these devices, and to investigate their optical performance at cryogenic temperatures.

Researchers

  Stefan Ast   PhD Student, 2014
  Wiebke Eckstein   PhD Student, 2014
  Anne Nathanael   PhD Student, 2013-2014
  Roman Schnabel   Professor, PI 2007-2014
  Andreas Tuennermann   Professor, PI 2007-2014
  Henning Vahlbruch   Dr., 2007

Former Associates
  Frank Brueckner   PhD Student, 2007-2011
  Daniel Friedrich   PhD Student, 2007-2012
  Holger Hartung   Researcher, 2012
  Stefanie Kroker   Researcher, 2013-2014
  Christoph Mahrdt   Student, 2007
  Tabea Schmidt   Student, 2008
  Marcel Schulze   PhD Student, 2011
  Thomas Siefke   PhD Student, 2013
  Martin Steglich   PhD Student, 2013
  Stefan Steiner   PhD Student, 2013
  Daniel Voigt   Researcher, 2013
  Thomas Weber   PhD Student, 2013

Publications

[1] Upper Limit to the Transverse to Longitudinal Motion Coupling of a Waveguide Mirror
S. Leavey, B. W. Barr, A. S. Bell, E.-B. Kley, N. Gordon, C. Graef, S. Hild, S. H. Hutter, S. Kroker, J. Macarthur, C. Messenger, M. Pitkin, B. Sorazu, K. Strain, A. Tuennermann, arXiv preprint arxiv:1410.1808 (2014).

[2] The Einstein Telescope
S. Kroker, R. Nawrodt on behalf of the Einstein Telescope Science Team, IEEE MetroAeroSpace (2014).

[3] Thermal noise of silicon based grating reflectors for high-precision metrology
S. Kroker, E.-B. Kley, A. Tuennermann, IEEE MetroAeroSpace (2014).

[4] Investigation on the angular dependent reflectance of coupled high-contrast gratings
S. Kroker, T. Kaesebier, E.-B. Kley, A. Tuennermann, Proceedings of SPIE OPTO 89950B, 89950B (2014).

[5] Silicon mirror suspensions for gravitational wave detectors
A. V. Cumming, L. Cunningham, G. D. Hammond, K. Haughian, J. Hough, S. Kroker, I. W. Martin, R. Nawrodt, S. Rowan, C. Schwarz and A. A. van Veggel, Class. Quantum Gravity 31, 025017 (2014).

[6] Invariance of waveguide grating mirrors to lateral displacement phase shifts
D. Brown, D. Friedrich, F. Brueckner, L. Carbone, R. Schnabel, A. Freise, Opt. Lett. 38, 1844 (2013).

[7] Coupled grating reflectors with highly angular tolerant reflectance
S. Kroker, T. Kaesebier, E.-B. Kley, and A. Tuennermann, Opt. Letters 38, 3336 (2013).

[8] Calculation of thermal noise in grating reflectors
D. Heinert, S. Kroker, D. Friedrich, S. Hild, E.- B. Kley, S. Leavey, I. W. Martin, R. Nawrodt, A. Tuennermann, S. P. Vyatchanin, and K. Yamamoto, Phys. Rev. D 88, 042001 (2013).

[9] Investigation of mechanical losses of thin silicon flexures at low temperatures
R. Nawrodt, C. Schwarz, S. Kroker, I. W. Martin, R. Bassiri, F. Brueckner, L. Cunningham, G. D. Hammond, D. Heinert, J. Hough, T. Kaesebier, E.- B. Kley, R. Neubert, S. Reid, S. Rowan, P. Seidel, A. Tuennermann., Class. Quantum Gravity 30, 115008 (2013).

[10] High efficiency two-dimensional grating reflectors with angularly tunable polarization efficiency
S. Kroker, T. Kaesebier, S. Steiner, E.-B. Kley, A. Tuennermann, Appl. Phys. Lett. 102, 161111 (2013).

[11] High contrast gratings for high-precision metrology
S. Kroker, S. Steiner, T. Kaesebier, E.-B. Kley, A. Tuennermann, Proceedings of SPIE OPTO 8633, 86330M (2013).

[12] Asymmetric direction selective filter elements based on high-contrast gratings
S. Steiner, S. Kroker T. Kaesebier, D. Voigt, D. Fuchs, J. Fuchs, E.-B. Kley, A. Tuennermann, Proceedings of SPIE OPTO 8633, 86330Z (2013).

[13] Angular bandpass filters based on dielectric resonant waveguide gratings
S. Steiner, S. Kroker T. Kaesebier, E.-B. Kley, and A. Tuennermann, Opt. Express 20, 22555 (2012).

[14] Scientific objectives of Einstein telescope
B. Sathyaprakash and the Einstein-Telescope- Science-Team, Class. Quantum Grav. 29, 124013 (2012).

[15] Novel direction selective filter elements based on high-contrast gratings
S. Steiner, S. Kroker, T. Kaesebier, E.-B. Kley and A. Tuennermann, Proceedings of SPIE OPTO 8270, 827007 (2012).

[16] Tuning the reflectivity of high contrast gratings based on silicon and silica by means of wet etching with hydrofluoric acid
T. Jacobitz, S. Kroker, T. Kaesebier, T. Weber, S. Steiner, E.-B. Kley and A. Tuennermann, Proceedings of SPIE OPTO 8270, 82700U (2012).

[17] Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity
D. Friedrich, B. W. Barr, F. Brueckner, S. Hild, J. Nelson, J. Mcarthur, M. V. Plissi, M. P. Edgar, S. H. Huttner, B. Sorazu, S. Kroker, M. Britzger, E.-B. Kley, K. Danzmann, A. Tuennermann, K. A. Strain, and R. Schnabel, Opt. Express 19, 14955 (2011).

[18] Enhanced angular tolerance of resonant waveguide grating reflectors
S. Kroker, F. Brueckner, E.-B. Kley, A. Tuennermann, Opt. Letters 36, 537 (2011).

[19] Widely tunable monolithic narrowband grating filter for near-infrared radiation
F. Brueckner, S. Kroker, D. Friedrich, E.-B. Kley A. Tuennermann, Opt. Letters 36, 436

[20] Realization of a Monolithic High-Reflectivity Cavity Mirror from a Single Silicon Crystal
F. Brueckner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tuennermann, R. Schnabel, Phys. Rev. Lett. 104, 163903 (2010).

[21] Building blocks for future detectors: Silicon test masses and 1550 nm laser light
R. Schnabel, M. Britzger, F. Brueckner, O. Burmeister, K. Danzmann, J. Dueck, T. Eberle, D. Friedrich, H. Lueck, M. Mehmet, R. Nawrodt, S. Steinlechner, and B. Willke,, Journal of Physics: Conf. Series (2010).

[22] Demonstration of a cavity coupler based on a resonant waveguide grating
Frank Brueckner, Daniel Friedrich, Tina Clausnitzer, Oliver Burmeister, Michael Britzger, Ernst-Bernhard Kley, Karsten Danzmann, Andreas Tuennermann, Roman Schnabel, Optics Express 17, 1, 163-169 (2009).

[23] Encapsulated subwavelength grating as quasi- monolithic resonant reflector
F. Brueckner, D. Friedrich, M. Britzger, T. Clausnitzer, O. Burmeister, E.-B. Kley, K. Danzmann, A. Tuennermann, and R. Schnabel, Opt. Express 17, 24334 (2009).

[24] Demonstration of a Monolithic Dielectric Microstructured Surface with a Reflectivity of 99.8%
F. Brueckner, T. Clausnitzer, T. Kaesebier, E.-B. Kley, and A. Tuennermann, Proc. IEEE/LEOS Int. Conf. Opt. MEMS Nanophotonics (2009).

[25] Experimentelle Realisierung einer monolithischen dielektrischen mikrostrukturierten Oberflaeche mit 99,9% Reflektivitaet
F. Brueckner, T. Clausnitzer, E.-B. Kley, A. Tuennermann, DPG-Fruehjahrstagung

[26] Demonstration of a coating-free surface with a reflectivity of 99.8%
F. Brueckner, D. Friedrich, T. Clausnitzer, M. Britzger, E.-B. Kley, A. Tuennermann, K. Danzmann, and Roman Schnabel, The 8th Edoardo Amaldi Conference on Gravitational Waves, New York City, USA

[27] Monolithic dielectric surfaces as new low-loss light-matter interfaces
F. Brueckner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tuennermann, R. Schnabel, Opt. Lett. 33, 264 (2008)

[28] Reflection-reduced encapsulated transmission grating
T. Clausnitzer, T. Kaempfe, F. Brueckner, R. Heinze, E.-B. Kley, and A. Tuennermann, Opt Lett. 33, 1972 (2008).

[29] 100% reflectivity from a monolithic dielectric microstructured surface, In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics
F. Brueckner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tuennermann, and R. Schnabel, edited by T. J. Suleski, W. V. Schoenfeld, J. J. Wang, Proc. SPIE

[30] High-reflection grating mirrors without coatings
D. Friedrich, O. Burmeister, M. Britzger, K. Danzmann, R. Schnabel, F. Brueckner, T. Clausnitzer, E.-B. Kley, A. Tuennermann, The Gravitational Wave Advanced Detector Workshop, Elba, Italy

[31] Monolithische dielektrische mikrostrukturierte Oberflaeche mit 100% Reflektivitaet
F. Brueckner, T. Clausnitzer, E.-B. Kley, A. Tuennermann, DPG-Fruehjahrstagung

[32] Mechanical Q-factor measurements on a test mass with a structured surface
R. Nawrodt, A. Zimmer, T. Koettig, T. Clausnitzer, A. Bunkowski, E.-B. Kley, R. Schnabel, K. Danzmann, S. Nietzsche, W. Vodel, A. Tuennermann, P. Seidel, New J. Phys. 9, 225 (2007).

[33] High reflectivity grating waveguide coatings for 1064 nm
A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, Class. Quantum Grav. 23, 7297

[34] Optical Characterization of ultra-high efficiency gratings
A. Bunkowski, O. Burmeister, T. Clausnitzer, E.- B. Kley, A. Tuennermann, K. Danzmann, R. Schnabel, Applied Optics 45, 5795 (2006).

[35] Ultra low-loss low-efficiency diffraction gratings
T. Clausnitzer, E.-B. Kley, A. Tuennermann, A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, S. Gliech, A. Duparre, Optics Express 13, 4370 (2005).

[36] Demonstration of a squeezing enhanced power- and signal-recycled Michelson interferometer
H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, R. Schnabel, Phys. Rev. Lett. 95, 211102, (2005).

[37] Low-loss grating for coupling to a high-finesse cavity
A. Bunkowski, O. Burmeister, P. Beyersdorf, K. Danzmann, R. Schnabel, T. Clausnitzer, E.-B. Kley, A. Tuennermann, Optics Letters 29, 2342 (2004).

[38] Microstructure Technology for Optical Component Fabrication
E.-B. Kley, L.-C. Wittig, and A. Tuennermann,, Springer Ser. Optic. Sciences Vol 97, Microoptics: From Technology to Applications J. Jahns, K.-H. Brenner, Springer Berlin, (2004)

[39] Diffractionless propagation of light in a low- index photonic-crystal film
R. Iliew, C. Etrich, U. Peschel, F. Lederer, M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tuennermann, Appl. Phys. Lett. 85, 5854, (2004)

[40] High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices
M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tuennermann, R. Iliew, C. Etrich, U. Peschel, F. Lederer, Appl. Phys. Lett. 84, 663, (2004).

[41] Polarization independent free-space wave add/drop filter
T. Clausnitzer, E.-B. Kley, H.-J. Fuchs, D. Schelle, A.-V. Tishchenko, O. Parriaux, U. Kroll, 10th Microoptics Conference, Jena, paper G2

[42] Resonant reflection and absorption in grating waveguide structures
O. Stenzel, Integrated Optics: Devices, Materials, and Technologies, Proceedings of SPIE 5355 (2003).

[43] Micro- and nanostructured optics
L. C. Wittig, E.-B. Kley, A. Tuennermann, Glass. Sci. Technology 76: 41 Suppl. C2, (2003).

Theses

[44] Laser interferometry with gratings
Alexander Bunkowski, PhD Thesis

[45] Advanced mirror concepts for high-precision metrology
Frank Brueckner, PhD Thesis