Black Hole Evolutions using Multiple Grid Patches

Jonathan Thornburg <jthorn@aei.mpg.de>
http://www.aei.mpg.de/~jthorn

Numerical Relativity Group
Max-Planck-Institut für Gravitationsphysik
Albert-Einstein-Institut
Golm, Germany
http://numrel.aei.mpg.de
Why Use Multiple Grid Patches?

Consider the numerical evolution of a (single) black hole spacetime

black hole ⇒ singularity ⇒ freezing slicing or excision
Why Use Multiple Grid Patches?

Consider the numerical evolution of a (single) black hole spacetime

black hole ⇒ singularity ⇒ freezing slicing or excision

We would like a smooth inner boundary for excision

- cubic (or other polyhedral) excision has causality problems at corners
- LEGO(TM) excision is messy (hard to finite difference stably/accurately)
- \((r, \theta, \phi)\) coordinates have severe \(z\) axis problems
Why Use Multiple Grid Patches?

Consider the numerical evolution of a (single) black hole spacetime

black hole ⇒ singularity ⇒ freezing slicing or excision

We would like a smooth inner boundary for excision

- cubic (or other polyhedral) excision has causality problems at corners
- LEGO\(^\text{TM}\) excision is messy (hard to finite difference stably/accurately)
- \((r, \theta, \phi)\) coordinates have severe \(z\) axis problems

We would like a smooth outer boundary

- well-posed outer BCs (maximally dissipative, constraint-preserving, . . .)
- matching Cauchy and characteristic codes
Why Use Multiple Grid Patches?

Consider the numerical evolution of a (single) black hole spacetime
black hole \Rightarrow singularity \Rightarrow freezing slicing or excision

We would like a smooth inner boundary for excision
- cubic (or other polyhedral) excision has causality problems at corners
- LEGO$^{(TM)}$ excision is messy (hard to finite difference stably/accurately)
- (r, θ, ϕ) coordinates have severe z axis problems

We would like a smooth outer boundary
- well-posed outer BCs (maximally dissipative, constraint-preserving, ...)
- matching Cauchy and characteristic codes

Hence $r \times \{\text{multiple angular patches covering } S^2\}$ coordinates/grids
- \Rightarrow smooth (spherical) inner and outer boundaries
- non-uniform radial coordinate \Rightarrow easy (partial) fixed mesh refinement

Extension to multiple BHs possible with more general multiple-patch systems
6-Patch “Inflated-Cube” Coordinates and Grid

Paint xyz grid lines on the faces of a cube, then inflate the cube into a sphere \Rightarrow 6 angular patches on the sphere (neighborhoods of $\pm z$, $\pm x$, and $\pm y$ axes)
6-Patch “Inflated-Cube” Coordinates and Grid

Paint xyz grid lines on the faces of a cube, then inflate the cube into a sphere \Rightarrow 6 angular patches on the sphere (neighborhoods of $\pm z$, $\pm x$, and $\pm y$ axes)

Patches have **ghost zones** which overlap neighboring patches; **interpolate** grid functions from neighboring patches into ghost zones
6-Patch “Inflated-Cube” Coordinates and Grid

Paint xyz grid lines on the faces of a cube, then inflate the cube into a sphere ⇒ 6 angular patches on the sphere (neighborhoods of $\pm z$, $\pm x$, and $\pm y$ axes)

Patches have **ghost zones** which overlap neighboring patches; **interpolate** grid functions from neighboring patches into ghost zones

Angular coordinates can be chosen so adjacent patches share angular coordinate perpendicular to their mutual boundary ⇒ only need 1D **interpolations** (along angular lines parallel to interpatch boundary in each $r = \text{constant shell}$)
6-Patch “Inflated-Cube” Coordinates and Grid

Paint xyz grid lines on the faces of a cube, then inflate the cube into a sphere \Rightarrow 6 angular patches on the sphere (neighborhoods of $\pm z$, $\pm x$, and $\pm y$ axes)

Patches have **ghost zones** which overlap neighboring patches; **interpolate** grid functions from neighboring patches into ghost zones

Angular coordinates can be chosen so adjacent patches share angular coordinate perpendicular to their mutual boundary
\Rightarrow only need **1D interpolations**
 (along angular lines parallel to interpatch boundary in each $r = \text{constant shell}$)

Complicated to implement, but works well

[[movie of 4th order convergence in scalar field evolution]]
General Relativity

Non-scalar quantities ⇒ each patch uses its own local coordinate basis
(alternative: use global xyz basis in all patches)

- write Einstein equations in 3-covariant form
- coordinate-transform xyz-basis initial data to each patch’s local basis
- coordinate-transform field variables when interpolating between neighboring patches (BSSN $\tilde{\Gamma}^k$ transformation needs dynamical \tilde{g}^{ij})
Non-scalar quantities ⇒ each patch uses its own local coordinate basis
(alternative: use global xyz basis in all patches)

• write Einstein equations in 3-covariant form
• coordinate-transform xyz-basis initial data to each patch’s local basis
• coordinate-transform field variables when interpolating between neighboring patches (BSSN $\tilde{\Gamma}^k$ transformation needs dynamical \tilde{g}^{ij})
• must also write **gauge conditions** in 3-covariant form
 (Γ-driver is **not** 3-covariant ⇒ needs global basis)
Evolution of Kerr Spacetime

Initial Data: Kerr spacetime, spin \(a = 0.6 \), Kerr coordinates
(horizon is \(r = 1.8m \) sphere)

Grid: \(r_{\text{min}} = 1.5m, r_{\text{max}} = 248m \), 200 radial zones
\(\Delta \theta = 3^\circ, \Delta r = 0.10m \) (1.8m) at inner (outer) boundary

Finite Differencing: 4th order in space, RK4 time integration
5th order Lagrange polynomial interpatch interpolation
excision via 4th order Lagrange polynomial extrapolation
Evolution of Kerr Spacetime

Initial Data: Kerr spacetime, spin $a = 0.6$, Kerr coordinates
(horizon is $r = 1.8m$ sphere)
Grid: $r_{\text{min}} = 1.5m$, $r_{\text{max}} = 248m$, 200 radial zones
$\Delta \theta = 3^\circ$, $\Delta r = 0.10m$ (1.8m) at inner (outer) boundary
Finite Differencing: 4th order in space, RK4 time integration
5th order Lagrange polynomial interpatch interpolation
excision via 4th order Lagrange polynomial extrapolation
BSSN evolution system
modified Bona-Massó lapse
time-independent (analytical) shift
(rotating) octant symmetry
standalone uniprocessor code, not in Cactus
Kerr Evolution: Convergence of Energy Constraint

Convergence is 4th order globally, 3rd order at interpatch boundaries
($t = 1000m$, $+z$ patch, $r =$ constant shell at $r = 2.19m$)

Convergence of C at $t=1000m$
Angular Dependence in $+z$ patch at $w=0.12$ ($r=2.19m$)

$\sigma = \nu$

$\rho = \mu$

66k-wrmax4 $C/(1.5^4)$
50k-wrmax4 $C/(2.0^4)$
33k-wrmax4 $C/(3.0^4)$
Kerr Evolution: Excision and Outer Boundary Stability

Figure [movie] shows 45° of xz plane (logarithmic radial scale)
Evolution of Distorted Black Hole

Initial Data: Schwarzschild BH + Brill wave
Grid: $r_{\text{min}} = 0.76m$, $r_{\text{max}} = 48m$, 52 radial zones
 $\Delta \theta = 3.2^\circ$, $\Delta r = 0.05m$ (2.1m) at inner (outer) boundary
Finite Differencing: same as non-Cactus code (bugs!)
Cactus, Carpet (multi-patch and mesh-refinement driver)
Bona minimal-distortion–driver shift [joint work with Denis Pollney]
slice stretching limits evolution to $\sim 30m$
Evolution of Distorted Black Hole

Initial Data: Schwarzschild BH + Brill wave
Grid: \(r_{\text{min}} = 0.76m, r_{\text{max}} = 48m \), 52 radial zones
\[\Delta \theta = 3.2^\circ, \Delta r = 0.05m (2.1m) \] at inner (outer) boundary
Finite Differencing: same as non-Cactus code (bugs!)
Cactus, Carpet (multi-patch and mesh-refinement driver)
Bona minimal-distortion–driver shift [joint work with Denis Pollney]
slice stretching limits evolution to \(\sim 30m \)

Figure [movie] shows \(\text{xz plane} \) (linear radial scale)
General Relativistic Hydrodynamics

[Joint work with Ian Hawke (Southampton)]

- use high-resolution shock capturing (HRSC) schemes
- use interpatch interpolation schemes (e.g. ENO) that can handle shocks
- no problems with shocks crossing patch boundaries

[movie showing advection of discontinuous test-fluid profiles]
General Relativistic Hydrodynamics

[Joint work with Ian Hawke (Southampton)]

- use high-resolution shock capturing (HRSC) schemes
- use interpatch interpolation schemes (e.g. ENO) that can handle shocks
- no problems with shocks crossing patch boundaries
 [movie showing advection of discontinuous test-fluid profiles]

Example: Relativistic Test-Fluid Accretion onto a Kerr BH \((a = 0.9)\) [test problem from Font, Ibanez and Papadopoulos (astro-ph/9810344)]

- Cactus, Carpet (multi-patch + mesh-refinement driver)
- Whisky (EU-network hydro code), PPM/Marquina solver (gr-qc/0501054)
- 5th order HRSC spatial finite differencing (weighted ENO)
- 4th order ENO interpatch interpolation
- RK4 time integration
- still relatively low resolution
 \((\Delta \theta = 4.5^\circ; \Delta r \approx 0.08m \text{ at BH, } \approx 1m \text{ at outer boundary})\)
Relativistic Test-Fluid Accretion onto a Kerr BH: Results

Figure shows contours of rest-mass density at $t = 200m$
needs more resolution \Rightarrow need multiprocessor
Cactus/Carpet Infrastructure for Multipatch

Existing Thorns that Work with Multipatch

- “pointwise” initial data thorns
- other initial data thorns that do their own elliptic solve independent of the Cactus grid, then interpolate to the Cactus grid
- evolution thorns require only boundary-condition changes
- local diagnostics work unchanged
Cactus/Carpet Infrastructure for Multipatch

Existing Thorns that Work with Multipatch

• “pointwise” initial data thorns
• other initial data thorns that do their own elliptic solve independent of the Cactus grid, then interpolate to the Cactus grid
• evolution thorns require only boundary-condition changes
• local diagnostics work unchanged

Work in Progress

• multiprocessor
• global interpolation ⇒ apparent-horizon finding, wave extraction
Cactus/Carpet Infrastructure for Multipatch

Existing Thorns that Work with Multipatch

- “pointwise” initial data thorns
- other initial data thorns that do their own elliptic solve independent of the Cactus grid, then interpolate to the Cactus grid
- evolution thorns require only boundary-condition changes
- local diagnostics work unchanged

Work in Progress

- multiprocessor
- global interpolation ⇒ apparent-horizon finding, wave extraction

Future Infrastructure Plans

- add a Cartesian patch in the middle
 ⇒ can have initial data without a black hole
 ⇒ also gives main infrastructure for binary BH
- visualization: coordinate-transform non-scalar diagnostics to \(xyz\) basis
Binary Black Holes (Future)

Add Cartesian patches:
Conclusions

Advantages of Multiple Grid Patches

- smooth inner boundary ⇒ excision is nice
- smooth outer boundary ⇒ easier to do well-posed outer BCs or Cauchy-characteristic matching
- non-uniform radial coordinate ⇒ easy (partial) fixed mesh refinement
Conclusions

Advantages of Multiple Grid Patches

- smooth inner boundary \(\Rightarrow \) excision is nice
- smooth outer boundary \(\Rightarrow \) easier to do well-posed outer BCs or Cauchy-characteristic matching
- non-uniform radial coordinate \(\Rightarrow \) easy (partial) fixed mesh refinement

Disadvantages of Multiple Grid Patches

- implementation complexity (interpolation centering near corners & symmetry planes)
- diagnostics complexity (different tensor basis in each patch)
- mathematical complexity \(\Rightarrow \) hard to prove well-posedness, stability, etc.
Conclusions

Advantages of Multiple Grid Patches

- smooth inner boundary ⇒ excision is nice
- smooth outer boundary ⇒ easier to do well-posed outer BCs or Cauchy-characteristic matching
- non-uniform radial coordinate ⇒ easy (partial) fixed mesh refinement

Disadvantages of Multiple Grid Patches

- implementation complexity (interpolation centering near corners & symmetry planes)
- diagnostics complexity (different tensor basis in each patch)
- mathematical complexity ⇒ hard to prove well-posedness, stability, etc.

Plans

- better gauges: 3-covariant, avoid slice stretching, nice spatial x^i, ...
- Physics: proto-NS collapse, toroidal NS oscillations, Cauchy-characteristic matching, ..., binary BH
Born versus Einstein

Excerpts from discussion after Einstein’s Fall 1913 lecture in Vienna, “The present position of the problem of gravitation”:

Born: I should like to put to Herr Einstein a question, namely, how quickly the action of gravitation is propagated in your theory. That it happens with the speed of light does not elucidate it to me. There must be a very complicated connection between these ideas.

Einstein: It is extremely simple to write down the equations for the case when the perturbations that one introduces in the field are infinitely small. Then the g’s differ only infinitesimally from those that would be present without the perturbation. The perturbations then propagate with the same velocity as light.

Born: But for great perturbations things are surely very complicated?

Einstein: Yes, it is a mathematically complicated problem. It is especially difficult to find exact solutions of the equations, as the equations are nonlinear.